The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072001 Variant of the factorial base representation of n. 0
1, 11, 101, 111, 201, 211, 1001, 1011, 1101, 1111, 1201, 1211, 2001, 2011, 2101, 2111, 2201, 2211, 3001, 3011, 3101, 3111, 3201, 3211, 10001, 10011, 10101, 10111, 10201, 10211, 11001, 11011, 11101, 11111, 11201, 11211, 12001, 12011, 12101, 12111 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
For n > 0, write n as sum(k = 0 to m, d_k*k!), where m is such that m! < n <= (m+1)!. Conditions d_0 = 1, 0 <= d_k <= k for k > 0 ensure that the representation is unique. a(n) is the concatenation of (the digits) d_m, ..., d_1, d_0.
a(n) is obtained by appending "1" to A007623(n-1), the standard factorial base representation of n-1.
REFERENCES
J. S. Madachy & J. A. H. Hunter, Mathematical Diversions, pp. 73-5 VNR Co. NY
LINKS
EXAMPLE
Determining a(2238): 720 = 6! < 2238 <= 7! = 5040; 2238 = 3*6! + 78; 78 = 3*4! + 6; 6 = 2*2! + 2 (to take 6 = 1*3! is not allowed since then condition d_0 = 1 cannot be met); 2 = 1*1! + 1*0!, so 2238 = 3*6! + 0*5! + 3*4! + 0*3! + 2*2! +
1*1! + 1*0! and a(2238) = 3030211.
PROG
(PARI) {for(n=1, 40, k=n-1; j=1; p=1; w=[]; while(p<=k, w=concat(p, w); j++; p=p*j); v="0"; for(i=1, length(w), d=divrem(k, w[i]); v=concat(v, d[1]); k=d[2]); print1(eval(concat(v, 1)), ", "))}
CROSSREFS
Cf. A007623.
Sequence in context: A364326 A208259 A043036 * A265510 A265528 A099821
KEYWORD
nonn,base
AUTHOR
Lekraj Beedassy, Jun 18 2002
EXTENSIONS
Edited by Klaus Brockhaus, Jun 10 2003, Jun 14 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 12:15 EDT 2024. Contains 373429 sequences. (Running on oeis4.)