login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of rational number i/j such that Sagher map sends i/j to n.
11

%I #49 Aug 26 2024 11:42:04

%S 1,1,1,2,1,1,1,1,3,1,1,2,1,1,1,4,1,3,1,2,1,1,1,1,5,1,1,2,1,1,1,1,1,1,

%T 1,6,1,1,1,1,1,1,1,2,3,1,1,4,7,5,1,2,1,1,1,1,1,1,1,2,1,1,3,8,1,1,1,2,

%U 1,1,1,3,1,1,5,2,1,1,1,4,9,1,1,2,1,1,1,1,1,3,1,2,1,1,1,1,1,7,3,10,1,1,1,1

%N Numerator of rational number i/j such that Sagher map sends i/j to n.

%C The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

%H Reinhard Zumkeller, <a href="/A071974/b071974.txt">Table of n, a(n) for n = 1..10000</a>

%H David M. Bradley, <a href="http://arxiv.org/abs/math/0509025">Counting the Positive Rationals: A Brief Survey</a>, arXiv:math/0509025 [math.HO], 2005.

%H Gerald Freilich, <a href="http://www.jstor.org/stable/2313350">A denumerability formula for the rationals</a>, Amer. Math. Monthly, Nov 1965, pp. 1013-1014.

%H Kevin McCrimmon, <a href="http://www.jstor.org/stable/2309448">Enumeration of the positive rationals</a>, Amer. Math. Monthly, Nov 1960, p. 868.

%H Yoram Sagher, <a href="http://www.jstor.org/stable/2324846">Counting the rationals</a>, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.

%H <a href="/index/Ra#rational">Index entries for sequences related to enumerating the rationals</a>

%F If n=Product p_i^e_i, then a_n=Product p_i^f(e_i), where f(n)=n/2 if n is even and f(n)=0 if n is odd. - _Reiner Martin_, Jul 08 2002

%F a(n^2) = n, A071975(n^2) = 1, cf. A000290; a(2*(2*n-1)^2) = 2*n+1, A071975(2*(2*n-1)^2) = 2, cf. A077591. - _Reinhard Zumkeller_, Jul 10 2011

%F From _Amiram Eldar_, Nov 02 2023, Jul 26 2024: (Start)

%F a(n) = sqrt(A350388(n)) (square root of largest unitary divisor of n that is a square).

%F Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-1)). (End)

%e The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...

%t f[{p_, a_}] := If[EvenQ[a], p^(a/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])

%t Table[Sqrt@ SelectFirst[Reverse@ Divisors@ n, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 104}] (* _Michael De Vlieger_, Dec 06 2018 *)

%o (PARI) a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,1,v[1,k]^(v[2,k]/2)))

%o (Haskell)

%o a071974 n = product $ zipWith (^) (a027748_row n) $

%o map (\e -> (1 - e `mod` 2) * e `div` 2) $ a124010_row n

%o -- _Reinhard Zumkeller_, Jun 15 2012

%o (Python)

%o from math import prod

%o from sympy import factorint

%o def A071974(n): return prod(p**(e>>1) for p, e in factorint(n).items() if e&1^1) # _Chai Wah Wu_, Jul 27 2024

%Y Cf. A071975. Differs from A056622 at a(32).

%Y Cf. A000290, A027748, A077591, A124010, A350388.

%Y For other bijective mappings from integers to positive rationals see A002487, A020652/A020653, A038568/A038569, A229994/A077610, A295515.

%K nonn,frac,easy,nice,mult

%O 1,4

%A _N. J. A. Sloane_, Jun 19 2002

%E More terms from _Reiner Martin_, Jul 08 2002

%E Additional references supplied by Kevin Ryde added by _N. J. A. Sloane_, May 31 2012