login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071938
Binomial(max(n,R(n)),min(n,R(n))) where R(n) is the reversal of n.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 293930, 206253075, 35240152720, 3188675231420, 202802465047245, 10358022441395860, 456703981505085600, 18150420051920130975, 190, 293930, 1, 28048800, 353697121050
OFFSET
1,10
COMMENTS
a(n) = Binomial(n,reverse(n)) if n >= reverse(n); = Binomial(reverse(n),n) if n < reverse(n).
a(n) = 1 if n is a palindrome. a(n) = n if n = 10^k. - Amarnath Murthy, Jul 14 2005
LINKS
EXAMPLE
a(10) = binomial(10,1) = 10, a(11) = 1, a(12) = binomial(21,12) = 293930.
MAPLE
R:=proc(n) local nn, nnn: nn:=convert(n, base, 10): add(nn[nops(nn)+1-j]*10^(j-1), j=1..nops(nn)) end: seq(binomial(max(n, R(n)), min(n, R(n))), n=1..27); # Emeric Deutsch, Jul 16 2005
MATHEMATICA
bmm[n_]:=Module[{ir=IntegerReverse[n]}, Binomial[Max[n, ir], Min[n, ir]]]; Array[ bmm, 30] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 13 2020 *)
CROSSREFS
Sequence in context: A280410 A288296 A288020 * A261942 A359734 A057603
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Jun 14 2002
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 23 2007
STATUS
approved