login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Non-Størmer numbers whose largest prime factor is a Størmer number.
2

%I #15 Aug 30 2021 10:54:02

%S 8,30,32,38,46,50,55,57,75,76,99,100,111,122,128,132,133,142,174,177,

%T 183,185,200,203,212,213,228,237,242,253,254,265,266,268,274,278,302,

%U 305,319,322,327,334,342,348,360,377,380,381,394,395,411,413,418,437

%N Non-Størmer numbers whose largest prime factor is a Størmer number.

%H Reinhard Zumkeller, <a href="/A071931/b071931.txt">Table of n, a(n) for n = 1..10000</a>

%o (Haskell)

%o a071931 n = a071931_list !! (n-1)

%o a071931_list = filter f a002312_list where

%o f x = 2 * gpf <= a006530 (gpf ^ 2 + 1) where gpf = a006530 x

%o -- _Reinhard Zumkeller_, Jun 12 2015

%o (Python)

%o from sympy import factorint

%o def stormer(n): return max(factorint(n*n + 1)) >= 2*n

%o def ok(n): return not stormer(n) and stormer(max(factorint(n)))

%o print(list(filter(ok, range(1, 438)))) # _Michael S. Branicky_, Aug 30 2021

%Y Cf. A005528, A002312.

%Y Cf. A006530.

%K nonn

%O 1,1

%A _Jason Earls_, Jun 14 2002