login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071903
Number of x less than or equal to n and divisible only by primes congruent to 3 mod 4 (i.e., in A004614).
2
1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 22
OFFSET
0,3
REFERENCES
Landau, "Handbuch der Lehre von der Verteilung der Primzahlen", vol. 2, Teubner, Leipzig; third edition: Chelsea, New York (1974), pp. 641-669.
LINKS
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 2, Leipzig, Berlin, B. G. Teubner, 1909.
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909.
FORMULA
a(n) = Card{ k | A004614(k) <= n }.
Asymptotically: a(n) ~ sqrt(2)*A*n/(Pi*sqrt(log(n))) where A = Product_{k>0} ((1-A002145(k)^(-2))^(-1/2)).
MATHEMATICA
With[{s = {1}~Join~Select[Range@ 80, AllTrue[FactorInteger[#][[All, 1]], Mod[#, 4] == 3 &] &]}, Table[LengthWhile[s, # <= n &], {n, Max@ s}]] (* Michael De Vlieger, Jul 30 2017 *)
PROG
(PARI) for(n=1, 100, print1(sum(i=1, n, if(sumdiv(i, d, isprime(d)*(d-3)%4), 0, 1)), ", "))
CROSSREFS
Sequence in context: A225643 A116563 A076695 * A091372 A185322 A324918
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 12 2002
STATUS
approved