Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 26 2018 02:47:33
%S 1,1,1,1,3,222
%N Number of different primitive polyhedral types of Voronoi regions of n-dimensional point lattices.
%C Or, number of combinatorial types of primitive n-dimensional parallelohedra.
%C Or, number of combinatorial types of Delaunay [Delone] decompositions of R^n.
%C Voronoi proved a(n) finite.
%D E. S. Barnes and N. J. A. Sloane, "The optimal lattice quantizer in three dimensions," SIAM J. Algebraic Discrete Methods vol. 4 (Mar. 1983) 30-41.
%D J. H. Conway, The Sensual Quadratic Form.
%D J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VI: Voronoi Reduction of Three-Dimensional Lattices, Proc. Royal Soc. London, Series A, 436 (1992), 55-68.
%D P. Engel, Investigations of parallelohedra in Rd, in: Voronoi's Impact on Modern Science, P. Engel and H. Syta (eds), Institute of Mathematics, Kyiv, 1998, Vol. 2, pp. 2260.
%D P. Engel, The contraction types of parallelohedra in E^5, Acta Crystallogr., A56 (2000), 491-496.
%D P. Engel and V. Grishukhin, There are exactly 222 L-types of primitive five-dimensional lattices. European J. Combin. 23 (2002), 275-279.
%D S. S. Ryshkov and E. P. Baranovskii, "C-types of n-dimensional lattices and 5-dimensional primitive parellohedra (with an application to the theory of coverings)" Proc. Steklov Inst. Math., 137 (1975) Trudy Mat. Inst. Steklov., 137 (1975)
%D M. I. Stogrin, Regular Dirichlet-Voronoi partitions for the second triclinic group, Trudy Matematicheskogo Instituta imeni V. A. Steklova, 123 (1973) = Proceedings of the Steklov Institute of Mathematics, 123 (1973).
%D G. F. Voronoi, "Studies of primitive parallelotopes", Collected Works, 2, Kiev (1952) pp. 239-368 (In Russian).
%H Mathieu Dutour Sikiric, Alexey Garber, <a href="https://arxiv.org/abs/1810.10911">Periodic triangulations of Z^n</a>, arXiv:1810.10911 [math.CO], 2018.
%H Russian Math. Encyclopedia, <a href="http://eom.springer.de/V/v096920.htm">Voronoi</a>
%H Achill Schuermann and Frank Vallentin, <a href="http://arxiv.org/abs/math/0403272">Computational Approaches to Lattice Packing and Covering Problems</a>, arXiv:math/0403272v3 [math.MG], 2004-2005.
%e a(2)=1 because the hexagon is the only allowed type (quadrilateral is a degenerate hexagon). a(3)=1 because the truncated octahedron is the only allowed type. - _Warren D. Smith_, Dec 27 2007
%Y Cf. A071880, A071882.
%K nonn,hard,nice
%O 0,5
%A _N. J. A. Sloane_, Jun 10 2002, Jul 03 2008