login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of k 1<=k<=n such that sigma(k) is odd.
2

%I #26 May 21 2022 08:42:30

%S 1,2,2,3,3,3,3,4,5,5,5,5,5,5,5,6,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,

%T 9,10,10,10,10,10,10,10,10,10,10,10,10,10,11,12,12,12,12,12,12,12,12,

%U 12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,15

%N Number of k 1<=k<=n such that sigma(k) is odd.

%C a(n) = partial sums of A053866(n-1) and A093709(n-1). - _Jaroslav Krizek_, Oct 18 2009

%C a(n) = number of points in [0, n*Pi/2] where cos(x) cos(x/2) ... cos(x/n) changes sign. - _Robert Israel_, Apr 29 2011

%D Richard Crandall and Carl Pomerance, Prime numbers: a computational perspective. Springer-Verlag, New York, 2001, p. 52.

%H Amiram Eldar, <a href="/A071860/b071860.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor( C * sqrt(n) ) +- 1, 0 with C = 1+1/sqrt(2) = 1.707...

%F a(n) = floor(sqrt(n)) + floor(sqrt(n/2)). (Crandall and Pomerance). - _Franz Vrabec_, Jun 24 2006

%t Accumulate[If[OddQ[DivisorSigma[1,#]],1,0]&/@Range[90]] (* _Harvey P. Dale_, Jul 15 2012 *)

%o (PARI) for(n=1,100,print1(sum(i=1,n,if(sigma(i)%2,1,0)),","))

%Y Cf. A000203, A028982, A053866, A093709.

%K easy,nonn

%O 1,2

%A _Benoit Cloitre_, Jun 09 2002

%E Offset corrected by _Amiram Eldar_, May 21 2022