login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(Number of 1's in binary expansion of n) mod 3.
7

%I #42 Apr 27 2023 07:05:26

%S 0,1,1,2,1,2,2,0,1,2,2,0,2,0,0,1,1,2,2,0,2,0,0,1,2,0,0,1,0,1,1,2,1,2,

%T 2,0,2,0,0,1,2,0,0,1,0,1,1,2,2,0,0,1,0,1,1,2,0,1,1,2,1,2,2,0,1,2,2,0,

%U 2,0,0,1,2,0,0,1,0,1,1,2,2,0,0,1,0,1,1,2,0,1,1,2,1,2,2,0,2,0,0,1,0,1,1,2,0

%N (Number of 1's in binary expansion of n) mod 3.

%C This is the generalized Thue-Morse sequence t_3 (Allouche and Shallit, p. 335).

%C Ternary sequence which is a fixed point of the morphism 0 -> 01, 1 -> 12, 2 -> 20.

%C Sequence is T^(oo)(0) where T is the operator acting on any word on alphabet {0,1,2} by inserting 1 after 0, 2 after 1 and 0 after 2. For instance T(001)=010112, T(120)=122001. - _Benoit Cloitre_, Mar 02 2009

%D J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

%H G. C. Greubel, <a href="/A071858/b071858.txt">Table of n, a(n) for n = 0..10000</a>

%H Jin Chen, Zhixiong Wen, Wen Wu, <a href="https://arxiv.org/abs/1802.03610">On the additive complexity of a Thue-Morse like sequence</a>, arXiv:1802.03610 [math.CO], 2018.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%F a(n) = A010872(A000120(n)).

%F Recurrence: a(2*n) = a(n), a(2*n+1) = (a(n)+1) mod 3.

%F a(n) = A000695(n) mod 3. - _John M. Campbell_, Jul 16 2016

%t f[n_] := Mod[ Count[ IntegerDigits[n, 2], 1], 3]; Table[ f[n], {n, 0, 104}] (* Or *)

%t Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 0}}] &, {0}, 7] (* _Robert G. Wilson v_ Mar 03 2005, modified May 17 2014 *)

%t Table[Mod[DigitCount[n,2,1],3],{n,0,110}] (* _Harvey P. Dale_, Jul 01 2015 *)

%o (PARI) for(n=1,200,print1(sum(i=1,length(binary(n)), component(binary(n),i))%3,","))

%o (PARI) map(d)=if(d==2,[2,0],if(d==1,[1,2],[0,1]))

%o {m=53;v=[];w=[0];while(v!=w,v=w;w=[];for(n=1,min(m,length(v)),w=concat(w,map(v[n]))));for(n=1,2*m,print1(v[n],","))} \\ _Klaus Brockhaus_, Jun 23 2004

%Y Cf. A000120, A010872.

%Y Cf. A010060, A001285, A010059, A048707, A096271, A100619, A179868.

%Y See A245555 for another version.

%K nonn,easy

%O 0,4

%A _Benoit Cloitre_, Jun 09 2002

%E Edited by _Ralf Stephan_, Dec 11 2004