login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the largest prime factor of k = prime(tau(k)).
1

%I #18 Oct 27 2024 09:05:41

%S 3,14,21,25,35,52,114,117,152,190,266,285,325,338,343,399,418,444,464,

%T 494,507,513,627,637,646,665,666,740,741,845,969,1036,1045,1183,1184,

%U 1235,1272,1463,1573,1590,1615,1628,1665,1729,1850,1859,1924,2116,2120

%N Numbers k such that the largest prime factor of k = prime(tau(k)).

%C Numbers k such that A006530(k) = A000040(A000005(k)).

%H Harvey P. Dale, <a href="/A071836/b071836.txt">Table of n, a(n) for n = 1..1000</a>

%e 666 = 2*3^2*37, tau(666) = 12, prime(12) = 37, hence 666 is a term.

%t Select[Range[2200],FactorInteger[#][[-1,1]]==Prime[DivisorSigma[0,#]]&] (* _Harvey P. Dale_, Aug 13 2021 *)

%o (PARI) for(n=2,3000,if(component(component(factor(n),1),omega(n))==prime(numdiv(n)),print1(n,",")))

%o (PARI) is(k) = if(k > 1, my(f = factor(k)); f[#f~, 1] == prime(numdiv(f)), 0); \\ _Amiram Eldar_, Oct 27 2024

%Y Cf. A000005, A000040, A006530, A105555.

%K easy,nonn

%O 1,1

%A _Benoit Cloitre_, Jun 08 2002