login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Restart counting after each new odd integer (a fractal sequence).
20

%I #70 Sep 12 2022 09:52:30

%S 1,1,2,3,1,2,3,4,5,1,2,3,4,5,6,7,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,

%T 10,11,1,2,3,4,5,6,7,8,9,10,11,12,13,1,2,3,4,5,6,7,8,9,10,11,12,13,14,

%U 15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1,2,3,4,5,6,7,8,9,10,11

%N Restart counting after each new odd integer (a fractal sequence).

%C The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446.

%C This is also a triangle read by rows in which row n lists the first 2*n-1 positive integers, n >= 1 (see example). - _Omar E. Pol_, May 29 2012

%C a(n) mod 2 = A071028(n). - _Boris Putievskiy_, Jul 24 2013

%C The triangle in the example is the triangle used by Kircheri in 1664. See the link "Mundus Subterraneus". - _Charles Kusniec_, Sep 11 2022

%H Reinhard Zumkeller, <a href="/A071797/b071797.txt">Table of n, a(n) for n = 1..1000</a>

%H Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, Daisy Ann A. Disu, <a href="http://www.dmmmsu-sluc.com/wp-content/uploads/2018/03/CAS-Monitor-2016-2017-1.pdf">On Fractal Sequences</a>, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.

%H C. Kimberling, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7321.pdf">Numeration systems and fractal sequences</a>, Acta Arithmetica 73 (1995) 103-117.

%H Athanasii Kircheri, <a href="https://archive.org/details/athanasiikircher00kirc_4/page/n53/mode/2up">Mundus Subterraneus</a>, (1664), pg. 24.

%H F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>, Phoenix,AZ: Xiquan,1993.

%H Michael Somos, <a href="/A073189/a073189.txt">Sequences used for indexing triangular or square arrays</a>

%F a(n) = 1 + A053186(n-1).

%F a(n) = n - 1 - ceiling(sqrt(n))*(ceiling(sqrt(n))-2); n > 0.

%F a(n) = n - floor(sqrt(n-1))^2, distance between n and the next smaller square. - _Marc LeBrun_, Jan 14 2004

%e a(1)=1; a(9)=5; a(10)=1;

%e From _Omar E. Pol_, May 29 2012: (Start)

%e Written as a triangle the sequence begins:

%e 1;

%e 1, 2, 3;

%e 1, 2, 3, 4, 5;

%e 1, 2, 3, 4, 5, 6, 7;

%e 1, 2, 3, 4, 5, 6, 7, 8, 9;

%e 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11;

%e 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13;

%e 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15;

%e Row n has length 2*n - 1 = A005408(n-1). (End)

%p A071797 := proc(n)

%p n-A048760(n-1) ;

%p end proc: # _R. J. Mathar_, May 29 2016

%t Array[Range[2# - 1]&, 10] // Flatten (* _Jean-François Alcover_, Jan 30 2018 *)

%o (PARI) a(n)=if(n<1,0,n-sqrtint(n-1)^2)

%o (Haskell)

%o import Data.List (inits)

%o a071797 n = a071797_list !! (n-1)

%o a071797_list = f $ tail $ inits [1..] where

%o f (xs:_:xss) = xs ++ f xss

%o -- _Reinhard Zumkeller_, Apr 14 2014

%Y Cf. A002260, A004737, A006590, A027052, A071028, A078358, A078446.

%Y Cf. A074294.

%Y Row sums give positive terms of A000384.

%K easy,nonn,tabf

%O 1,3

%A _Antonio Esposito_, Jun 06 2002