login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the fifth (of 10) decimal selvage number; the n-th digit of a decimal selvage number, x, is equal to the tenths digit of n*x.
5

%I #25 Jan 20 2017 09:44:15

%S 4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,8,3,8,3,8,3,8,3,8,3,8,3,8,3,8,

%T 3,8,3,8,3,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,6,1,6,1,6,1,6,1,6,

%U 1,6,1,6,1,6,1,6,1,6,1,5,0,5,0,5,0,5,0,5,0,5,0,5,0,5,0,5,0,5,9,4

%N Decimal expansion of the fifth (of 10) decimal selvage number; the n-th digit of a decimal selvage number, x, is equal to the tenths digit of n*x.

%C In other words, this constant satisfies x = Sum_{n>=0} ( floor(10*n*x) (mod 10) ) / 10^n.

%F a(n) = floor(10*n*x) (mod 10), where x = Sum_{k>0} a(k)/10^k.

%F a(n) = 9 - A071873(n).

%e x = .49494949494949494948383838383838383838372727272727...

%e a(5) = 4 since floor(10*5*x) (mod 10) = 4.

%e The multiples of this constant x begin:

%e 1*x = 0.4949494949494949494838383838383838383837...

%e 2*x = 0.9898989898989898989676767676767676767675...

%e 3*x = 1.484848484848484848451515151515151515151...

%e 4*x = 1.979797979797979797935353535353535353535...

%e 5*x = 2.474747474747474747419191919191919191919...

%e 6*x = 2.969696969696969696903030303030303030302...

%e 7*x = 3.464646464646464646386868686868686868686...

%e 8*x = 3.959595959595959595870707070707070707070...

%e 9*x = 4.454545454545454545354545454545454545454...

%e 10*x = 4.949494949494949494838383838383838383837...

%e 11*x = 5.444444444444444444322222222222222222221...

%e 12*x = 5.939393939393939393806060606060606060605...

%e wherein the tenths place of n*x yields the n-th digit of x.

%t k = 4; f[x_] := Floor[10*FractionalPart[x]]; Clear[xx]; xx[n_] := xx[n] = Catch[For[x = xx[n - 1], True, x += 10^(-n), If[f[n*x] == f[10^(n - 1)*x], Throw[x]]]]; xx[1] = k/10; Scan[xx, Range[100]]; RealDigits[xx[100]][[1]] (* _Jean-François Alcover_, Dec 06 2012 *)

%t Clear[a]; a[1] = 4; a[2] = 9; a[n0 = 3] = 4; a[_] = 0; digits = 10^(n0-1); Do[a[n] = Mod[Floor[10*n*Sum[a[k]/10^k, {k, 1, n}]], 10], {n, n0+1, digits}]; Table[a[n], {n, 1, digits}]

%Y Cf. A071789, A071790, A071791, A071792, A071873, A071874, A071875, A071876, A071877.

%K nonn,cons,base,nice

%O 0,1

%A _Paul D. Hanna_, Jun 06 2002