OFFSET
0,2
COMMENTS
It appears that there is a constant A > 0 such that for any n>1: An/log(n) < 2a(n) - n < n/Log(n) and that lim n ->infinity (2*a(n) - n )/(n/Log(n)) exists. - Benoit Cloitre, Jan 29 2006
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
MATHEMATICA
Table[ Mod[ PartitionsP[n], 2], {n, 0, 73}] // Accumulate (* Jean-François Alcover, Jun 18 2013 *)
PROG
(PARI) \ps100 s=0; for(n=0, 80, s=s+(1-(-1)^polcoeff(1/eta(x), n, x))/2; print1(s, ", "))
(PARI) a(n) = sum(k=0, n, numbpart(k) % 2); \\ Michel Marcus, Feb 24 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 24 2002
STATUS
approved