Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Sep 08 2022 08:45:06
%S 1,11,70,348,1449,5334,17822,55165,160215,441105,1159752,2929465,
%T 7142275,16873472,38749850,86737678,189672868,405991500,852077072,
%U 1756048833,3558408287,7098041203,13951818365,27047831797,51760979985
%N a(n) = p(7n+5)/7 where p(k) denotes the k-th partition number.
%C One of the congruences related to the partition numbers stated by Ramanujan.
%D Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193.
%D G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From _N. J. A. Sloane_, Jun 07 2012
%H Seiichi Manyama, <a href="/A071746/b071746.txt">Table of n, a(n) for n = 0..1000</a>
%H J. L. Drost, <a href="http://www.jstor.org/stable/2974479">A Shorter Proof of the Ramanujan Congruence Modulo 5</a>, Amer. Math. Monthly 104(10) (1997), 963-964.
%H Lasse Winquist, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80105-5">An elementary proof of p(11m+6) == 0 (mod 11)</a>, J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From _N. J. A. Sloane_, Jun 07 2012
%F a(n) = (1/7)*A000041(7n+5).
%F a(n) = A000041(A017041(n))/7 = A213261(n)/7. - _Omar E. Pol_, Jan 18 2013
%t Table[PartitionsP[7n+5]/7, {n, 0, 24}] (* _Jean-François Alcover_, Nov 30 2015 *)
%o (PARI) a(n)=if(n<0, 0, n=7*n+5; polcoeff(1/eta(x+x*O(x^n)),n)/7)
%o (PARI) {a(n)=local(A,B); if(n<0, 0, A=x*O(x^n); B=eta(x^7+A); A=eta(x+A); polcoeff( B^3/A^4 +x*7*B^7/A^8, n))} /* _Michael Somos_, Jan 01 2006 */
%o (PARI) a(n) = numbpart(7*n+5)/7; \\ _Michel Marcus_, Nov 30 2015
%o (Magma) a:= func< n | NumberOfPartitions((7*n+5)) div 7 >; [ a(n) : n in [0..30]]; // _Vincenzo Librandi_, Nov 30 2015
%Y Cf. A000041, A017041, A071734, A076394, A213261, A327582, A327714, A327770.
%K easy,nonn
%O 0,2
%A _Benoit Cloitre_, Jun 24 2002