login
The binary encoding of parenthesizations given in a "global arithmetic order", using A001477 as the packing bijection N X N -> N.
4

%I #4 Apr 30 2014 01:53:48

%S 10,1100,1010,111000,110010,101100,110100,11100010,11001100,101010,

%T 11110000,11010010,1110001100,11001010,10111000,11100100,1111000010,

%U 1101001100,1110001010,1100111000,10110010,11011000,1110010010

%N The binary encoding of parenthesizations given in a "global arithmetic order", using A001477 as the packing bijection N X N -> N.

%H A. Karttunen, <a href="http://www.iki.fi/~kartturi/matikka/Nekomorphisms/gatomorf.htm">Gatomorphisms</a> (Includes the complete Scheme source for computing this sequence)

%Y Cf. A071672(n) = A063171(A071654(n)). Permutation of A063171 and A071671. Particularly, applying the automorphism ReflectBinTree (A057163) to A071672(n) yields A071671(n). The length of each term / 2: A071673.

%K nonn,tabl

%O 1,1

%A _Antti Karttunen_, May 30 2002