login
A071535
(-1)^(n+1) * Determinant of n X n matrix of form [1^2 2^2 3^2 4^2 5^2 / 2^2 1^2 2^2 3^2 4^2 / 3^2 2^2 1^2 2^2 3^2 / 4^2 3^2 2^2 1^2 2^2 / 5^2 4^2 3^2 2^2 1^2].
0
1, 15, 176, 1680, 13824, 102144, 696320, 4460544, 27197440, 159318016, 902823936, 4975493120, 26776436736, 141180272640, 731218182144, 3728300048384, 18747532247040, 93110596009984, 457328117678080, 2223830986653696, 10715840324304896, 51209754063667200
OFFSET
1,2
FORMULA
a(n) = 2^(-5+2*n)*(6+8*n+5*n^2+4*n^3+n^4)/3. - Colin Barker, Oct 24 2014
G.f.: -x*(64*x^4-80*x^3+36*x^2-5*x+1) / (4*x-1)^5. - Colin Barker, Oct 24 2014
MATHEMATICA
LinearRecurrence[{20, -160, 640, -1280, 1024}, {1, 15, 176, 1680, 13824}, 30] (* Harvey P. Dale, Aug 13 2024 *)
PROG
(PARI) for(n=1, 30, print1((-1)^(n+1)*matdet(matrix(n, n, i, j, sum(k=0, n-1, if(abs(i-j)-k, 0, (k+1)^2)))), ", "))
(PARI) Vec(-x*(64*x^4-80*x^3+36*x^2-5*x+1)/(4*x-1)^5 + O(x^100)) \\ Colin Barker, Oct 24 2014
CROSSREFS
Sequence in context: A120995 A024197 A210782 * A081043 A155000 A009146
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 20 2002
EXTENSIONS
More terms, and typos in data fixed by Colin Barker, Oct 24 2014
STATUS
approved