login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5-smooth numbers (A051037) <= n.
11

%I #32 Sep 17 2024 04:31:00

%S 1,2,3,4,5,6,6,7,8,9,9,10,10,10,11,12,12,13,13,14,14,14,14,15,16,16,

%T 17,17,17,18,18,19,19,19,19,20,20,20,20,21,21,21,21,21,22,22,22,23,23,

%U 24,24,24,24,25,25,25,25,25,25,26,26,26,26,27,27,27,27,27,27,27,27,28,28

%N Number of 5-smooth numbers (A051037) <= n.

%C A 5-smooth number is a number of the form 2^x*3^y*5^z (x,y,z) >= 0.

%F a(n) = Card{ k | A051037(k) <= n }.

%F Asymptotically : let a = 1/(6*log(2)*log(3)*log(5)) and b = sqrt(30) then a(n) = a*log(b*n)^3 + O(log(n)).

%F a(n) = -Sum_{k=1,n} mu(30*k)*floor(n/k). - _Benoit Cloitre_, Jun 14 2007

%F a(n) = Sum_{i=0..floor(log_5(n))} Sum_{j=0..floor(log_3(n/5^i))} floor(log_2(2*n/(5^i*3^j))). - _Ridouane Oudra_, Jul 17 2020

%t Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<6,1,0],{n,80}]] (* _Harvey P. Dale_, Aug 04 2024 *)

%o (PARI) for(n=1,100,print1(sum(k=1,n,if(sum(i=4,n,if(k%prime(i),0,1)),0,1)),","))

%o (PARI) a(n)=-sum(k=1,n,moebius(2*3*5*k)*floor(n/k)) \\ _Benoit Cloitre_, Jun 14 2007

%o (Python)

%o from sympy import integer_log

%o def A071520(n):

%o c = 0

%o for i in range(integer_log(n,5)[0]+1):

%o for j in range(integer_log(m:=n//5**i,3)[0]+1):

%o c += (m//3**j).bit_length()

%o return c # _Chai Wah Wu_, Sep 16 2024

%Y Cf. A051037, A106598, A112751.

%K easy,nonn

%O 1,2

%A _Benoit Cloitre_, Jun 02 2002

%E Title corrected by _Rainer Rosenthal_, Aug 30 2020