login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+1) - 2*a(n) + a(n-1) = (2/3)*(1 + w^(n+1) + w^(2*n+2)) with a(1)=0, a(2)=1, and where w is the imaginary cubic root of unity.
1

%I #25 Mar 02 2017 11:39:31

%S 0,1,4,7,10,15,20,25,32,39,46,55,64,73,84,95,106,119,132,145,160,175,

%T 190,207,224,241,260,279,298,319,340,361,384,407,430,455,480,505,532,

%U 559,586,615,644,673,704,735,766,799,832,865,900,935,970,1007,1044

%N a(n+1) - 2*a(n) + a(n-1) = (2/3)*(1 + w^(n+1) + w^(2*n+2)) with a(1)=0, a(2)=1, and where w is the imaginary cubic root of unity.

%C w = exp(2*Pi*i/3)= (-1 - sqrt(-3))/2. Beginning with a(2) the first differences are 3,3,3,5,5,5,7,7,7,9,9,9,11, etc.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).

%F a(n) = A032765(n)-1.

%F a(n) = floor((n-1)*(n+1)*(n+3)/(3*n+3)). - _Gary Detlefs_, Jul 13 2010

%F a(n) = (n-1)^2 - A030511(n-1). - _Wesley Ivan Hurt_, Jun 19 2013

%F G.f.: x^2*(1+x)*(x^2-x-1) / ( (1+x+x^2)*(x-1)^3 ). - _R. J. Mathar_, Jun 23 2013

%F a(n) = n + floor(n*(n-1)/3) - 1. - _Bruno Berselli_, Mar 02 2017

%t a[1] = 0; a[2] = 1; w = Exp[2Pi*I/3]; a[n_] := a[n] = Simplify[(2/3)(1 + w^n + w^(2n)) + 2a[n - 1] - a[n - 2]]; Table[ a[n], {n, 1, 60}]

%t Table[If[n<3,n-1,Floor[((n+1)^2-4)/3]],{n,1,100}] (* _Vladimir Joseph Stephan Orlovsky_, Jan 30 2012 *)

%t LinearRecurrence[{2,-1,1,-2,1},{0,1,4,7,10},60] (* _Harvey P. Dale_, Jun 10 2016 *)

%o (PARI) a(n)=n*(n+2)\3 - 1 \\ _Charles R Greathouse IV_, Mar 02 2017

%Y Cf. A071618.

%K nonn,easy

%O 1,3

%A _Robert G. Wilson v_, Jun 24 2002