login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least k such that k*prime(n) + 1 and k*prime(n) - 1 are twin primes.
5

%I #18 Oct 15 2013 22:31:23

%S 2,2,6,6,18,24,6,12,6,12,42,54,30,24,6,120,18,258,24,18,84,132,54,48,

%T 114,42,6,6,48,24,144,30,6,12,12,78,24,36,30,54,132,18,90,36,66,18,42,

%U 30,120,30,36,42,18,18,54,84,60,12,210,12,6,60,150,102,6,210,30,24,6

%N Least k such that k*prime(n) + 1 and k*prime(n) - 1 are twin primes.

%C Note that 6 divides a(n) for n > 2. - _T. D. Noe_, Jan 07 2013

%H T. D. Noe, <a href="/A071407/b071407.txt">Table of n, a(n) for n = 1..10000</a>

%e n=4: prime(4)=7, a(4)=6 because 6*prime(4)=42 and {41,43} are primes.

%t Table[fl=1; Do[s=(Prime[j])*k; If[PrimeQ[s-1]&&PrimeQ[s+1]&&Equal[fl, 1], Print[{j, k}]; fl=0], {k, 1, 2*j^2}], {j, 0, 100}]

%o (Haskell)

%o a071407 n = head [k | k <- [2,4..], let x = k * a000040 n,

%o a010051' (x - 1) == 1, a010051' (x + 1) == 1]

%o -- _Reinhard Zumkeller_, Feb 14 2013

%Y Cf. A071256, A071404-A071406, A060256, A060210.

%Y Cf. A071558 (k at every integer).

%Y Cf. A220141, A220142 (record values).

%K nonn

%O 1,1

%A _Labos Elemer_, May 24 2002