Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 14 2022 23:17:29
%S 18362,2914913,5516281,6618242,7224834,9018353,9339114,10780554,
%T 16831081,17800553,18164161,18646202,20239913,29743561,32464433,
%U 32915513,42464514,43502033,45652314,51755761,53464314,62198634
%N Numbers k such that k+0, k+1, k+2, k+3, k+4, and k+5 are, in some order, 1 * a prime, 2 * a prime, ... and 6 * a prime.
%C The terms ending in the digit "1" are primes congruent to 1 (mod 120), which form the sequence A208455: See there for a proof. - _M. F. Hasler_, Feb 27 2012
%C A001221(a(n)) <= A001222(a(n)) <= 3. - _Reinhard Zumkeller_, Jul 31 2015
%H Reinhard Zumkeller, <a href="/A071368/b071368.txt">Table of n, a(n) for n = 1..100</a>
%e From _Reinhard Zumkeller_, Jul 31 2015: (Start)
%e 18362 is in the sequence because 18362=2*9181, 18363=3*6121, 18364=4*4591, 18365=5*3673, 18366=6*3061 and 18367=1*18367. The left factors are the integers 1 to 6; and the right factors are primes.
%e 5516281 is the smallest term also occurring in A071367:
%e 5516281 + 0 = 1 * 5516281 = prime(381844) = a(3) = A071367(77);
%e 5516281 + 1 = 2 * 2758141 = 2 * prime(200537);
%e 5516281 + 2 = 3 * 1838761 = 3 * prime(137758);
%e 5516281 + 3 = 4 * 1379071 = 4 * prime(105622);
%e 5516281 + 4 = 5 * 1103257 = 5 * prime(85955);
%e 5516281 + 5 = 6 * 919381 = 6 * prime(72692), not needed for A071367.
%e (End)
%o (Haskell)
%o a071368 n = a071368_list !! (n-1)
%o a071368_list = filter f [1..] where
%o f x = and $ map g [6, 5 .. 1] where
%o g k = sum (map h $ map (+ x) [0..5]) == 1 where
%o h z = if r == 0 then a010051' z' else 0
%o where (z', r) = divMod z k
%o -- _Reinhard Zumkeller_, Jul 31 2015
%Y Cf. A071367 - A071373.
%Y Cf. A010051, A001221, A001222.
%K nonn
%O 1,1
%A _Don Reble_, May 21 2002