Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 29 2022 06:46:21
%S 2,5,11,41,92,733,4337,28972,195098,1797746
%N a(n) is the smallest number that cannot be obtained from the numbers {1,3,...,2*n-1} using each number at most once and the operators +, -, *, /, where intermediate subexpressions must be integers.
%C If noninteger subexpressions are permitted, a(5) = 122 and not 92 since 92 = (3+7)*(9 + 1/5). - _Michael S. Branicky_, Jul 01 2022
%H Gilles Bannay, <a href="https://web.archive.org/web/20061201125224/http://gilles.bannay.free.fr/jeux_us.html">Countdown Problem</a>
%H <a href="/index/Fo#4x4">Index entries for similar sequences</a>
%e a(2)=5 because using {1,3} and the four operations we can obtain 1=1, 3-1=2, 3=3, 3+1=4 but we cannot obtain 5 in the same way.
%o (Python)
%o def a(n):
%o R = dict() # index of each reachable subset is [card(s)-1][s]
%o for i in range(n): R[i] = dict()
%o for i in range(1, n+1): R[0][(2*i-1,)] = {2*i-1}
%o reach = set(range(1, 2*n, 2))
%o for j in range(1, n):
%o for i in range((j+1)//2):
%o for s1 in R[i]:
%o for s2 in R[j-1-i]:
%o if set(s1) & set(s2) == set():
%o s12 = tuple(sorted(set(s1) | set(s2)))
%o if s12 not in R[len(s12)-1]:
%o R[len(s12)-1][s12] = set()
%o for a in R[i][s1]:
%o for b in R[j-1-i][s2]:
%o allowed = [a+b, a*b, a-b, b-a]
%o if a!=0 and b%a==0: allowed.append(b//a)
%o if b!=0 and a%b==0: allowed.append(a//b)
%o R[len(s12)-1][s12].update(allowed)
%o reach.update(allowed)
%o k = 1
%o while k in reach: k += 1
%o return k
%o print([a(n) for n in range(1, 9)]) # _Michael S. Branicky_, Jul 01 2022
%Y Cf. A060315, A071848.
%K hard,more,nonn
%O 1,1
%A Koksal Karakus (karakusk(AT)hotmail.com), Jun 11 2002
%E a(10) from _Michael S. Branicky_, Jul 01 2022