Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 07 2022 02:29:26
%S 1,8,336,112896,276595200,4662288691200,546914437209907200,
%T 450219964711195607040000,2596509480922336727312302080000,
%U 104784757384177668346109081238896640000,29597339316082819652234687848790174733434880000
%N a(n) = (1/2) * (number of n X n 0..6 matrices M with MM' mod 7 = I, where M' is the transpose of M and I is the n X n identity matrix).
%C Also, number of n X n orthogonal matrices over GF(7) with determinant 1. - _Max Alekseyev_, Nov 06 2022
%H Jessie MacWilliams, <a href="https://doi.org/10.2307/2317262">Orthogonal Matrices Over Finite Fields</a>, The American Mathematical Monthly 76:2 (1969), 152-164.
%F a(2k+1) = 7^k * Product_{i=0..k-1} (7^(2k) - 7^(2i)); a(2k) = (7^k + (-1)^(k+1)) * Product_{i=1..k-1} (7^(2k) - 7^(2i)) (see MacWilliams, 1969). - _Max Alekseyev_, Nov 06 2022
%F Conjecture: Let b(n) be the number of solutions to the equation Sum_{i = 1..n} x_i^2 = 1 (mod 7) with x_i in 0..6. We conjecture that b(n) = 7*b(n-1) - 7*b(n-2) + 49*b(n-3) for n >= 4 with b(1) = 2, b(2) = 8, and b(3) = 42. We also conjecture that a(n+1) = a(n)*b(n+1) for n >= 1. - _Petros Hadjicostas_, Dec 19 2019
%e From _Petros Hadjicostas_, Dec 19 2019: (Start)
%e For n = 2, the 2*a(2) = 16 n X n matrices M with elements in 0..6 that satisfy MM' = I are the following:
%e (a) those with 1 = det(M) mod 7:
%e [[1,0],[0,1]]; [[0,1],[6,0]]; [[0,6],[1,0]]; [[2,2],[5,2]];
%e [[2,5],[2,2]]; [[5,2],[5,5]]; [[5,5],[2,5]]; [[6,0],[0,6]].
%e These are the elements of the abelian group SO(2,Z_7). See the comments for sequence A060968.
%e (b) those with 6 = det(M) mod 7:
%e [[0,1],[1,0]]; [[0,6],[6,0]]; [[1,0],[0,6]]; [[2,2],[2,5]];
%e [[2,5],[5,5]]; [[5,2],[2,2]]; [[5,5],[5,2]]; [[6,0],[0,1]].
%e Note that, for n = 3, we have 2*a(3) = 2*336 = 672 = A264083(7). (End)
%o (PARI) { a071306(n) = my(t=n\2); prod(i=0, t-1, 7^(2*t)-7^(2*i)) * if(n%2, 7^t, 1/(7^t+(-1)^t)); } \\ _Max Alekseyev_, Nov 06 2022
%Y Cf. A060968, A071302, A071303, A071305, A071306, A071307, A071308, A071309, A071310, A071900, A087784, A208895, A264083, A318609.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jun 11 2002
%E Terms a(6) onward from _Max Alekseyev_, Nov 06 2022