Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 30 2022 18:19:59
%S 0,0,0,0,0,0,1,1,1,2,1,2,2,3,1,3,4,2,3,4,5,2,4,6,5,3,1,7,6,5,8,4,7,6,
%T 9,3,8,10,5,7,9,11,4,8,12,10,6,2,13,11,9,14,7,12,10,15,5,13,16,8,11,
%U 14,17,6,12,18,15,9,3,19,16,13,20,10,17,14,21,7,18,22
%N Numerators of Peirce sequence of order 6.
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 151.
%F Conjectures from _Colin Barker_, Mar 29 2017: (Start)
%F G.f.: x^6*(x^41 + x^40 + x^39 + x^38 + 2*x^37 + 2*x^36 + x^35 + 3*x^34 + 2*x^33 + 3*x^32 + 2*x^31 + 4*x^30 + 3*x^29 + 4*x^28 + 5*x^27 + x^26 + 3*x^25 + 5*x^24 + 6*x^23 + 4*x^22 + 2*x^21 + 5*x^20 + 4*x^19 + 3*x^18 + 2*x^17 + 4*x^16 + 3*x^15 + x^14 + 3*x^13 + 2*x^12 + 2*x^11 + x^10 + 2*x^9 + x^8 + x^7 + x^6)/(x^42 - 2*x^21 + 1).
%F a(n) = 2*a(n-21) - a(n-42) for n>41.
%F (End)
%e The Peirce sequences of orders 1, 2, 3, 4, 5 begin:
%e 0/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 ...
%e 0/2 0/1 1/2 2/2 1/1 3/2 4/2 2/1 ... (numerators are A009947)
%e 0/2 0/3 0/1 1/3 1/2 2/3 2/2 3/3 ...
%e 0/2 0/4 0/3 0/1 1/4 1/3 2/4 1/2 ...
%e 0/2 0/4 0/5 0/3 0/1 1/5 1/4 1/3 ...
%Y Cf. A071281-A071288.
%K nonn,frac,easy
%O 0,10
%A _N. J. A. Sloane_, Jun 11 2002
%E More terms from _Reiner Martin_, Oct 15 2002