login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(14*n^2 - 21*n + 13)/6.
2

%I #22 Aug 05 2024 08:44:02

%S 0,1,9,38,102,215,391,644,988,1437,2005,2706,3554,4563,5747,7120,8696,

%T 10489,12513,14782,17310,20111,23199,26588,30292,34325,38701,43434,

%U 48538,54027,59915,66216,72944,80113,87737,95830,104406,113479,123063

%N a(n) = n*(14*n^2 - 21*n + 13)/6.

%D T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

%H Vincenzo Librandi, <a href="/A071229/b071229.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -1*a(n-4).

%F G.f.: x*(1 + 5*x + 8*x^2)/(1-x)^4. - _Harvey P. Dale_, Jun 29 2011

%F E.g.f.: (1/6)*x*(6 + 21*x + 14*x^2)*exp(x). - _G. C. Greubel_, Aug 05 2024

%t Table[ n*(14*n^2 - 21*n + 13)/6, {n, 0, 40}]

%t LinearRecurrence[{4,-6,4,-1},{0,1,9,38},40] (* or *) CoefficientList[ Series[x*(1+5x+8x^2)/(1-x)^4,{x,0,40}],x] (* _Harvey P. Dale_, Jun 29 2011 *)

%o (Magma) [n*(14*n^2-21*n+13)/6: n in [0..50]]; // _Vincenzo Librandi_, Jun 14 2011

%o (SageMath)

%o def A071229(n): return n*(14*n^2-21*n+13)/6

%o [A071229(n) for n in range(51)] # _G. C. Greubel_, Aug 05 2024

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Jun 11 2002

%E More terms from _Robert G. Wilson v_, Jun 12 2002