login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071184
a(1)=1, a(n) is the smallest integer > a(n-1) such that the sum of elements of the simple continued fraction for S(n)=1/a(1)+1/a(2)+...+1/a(n) equals n*(n+1)/2 the n-th triangular number.
0
1, 2, 8, 10, 60, 75, 131, 195, 988, 1120, 1130, 1232, 1345, 1347, 1953, 2933, 3549, 9956, 13797, 13970, 14586, 14652, 14903, 17166, 19176, 19634, 22584, 24354, 24842, 26488, 29388, 30840, 31409, 34934, 36059, 45149, 49793, 52690, 59413, 61063
OFFSET
1,2
EXAMPLE
1/a(1)+1/a(2)+1/a(3)+1/a(4) = (1+1/2+1/8+1/10) which continued fraction is {1, 1, 2, 1, 1, 1, 3} and 1+1+2+1+1+1+3 = 10 = 4*5/2 the fourth triangular number.
PROG
(PARI) s=1; t=1; for(n=2, 22, s=s+1/t; while(abs(n*(n+1)/2+1-sum(i=1, length(contfrac(s+1/t)), component(contfrac(s+1/t), i)))>0, t++); print1(t, ", "))
CROSSREFS
Sequence in context: A107227 A188539 A230826 * A174153 A171976 A362278
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 10 2002
EXTENSIONS
More terms from Lambert Klasen (lambert.klasen(AT)gmx.de), Dec 18 2004
STATUS
approved