login
A071159
Integers whose decimal expansion start with 1, do not contain zeros and each successive digit to the right is at most one greater than the previous digit.
10
1, 11, 12, 111, 112, 121, 122, 123, 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231, 1232, 1233, 1234, 11111, 11112, 11121, 11122, 11123, 11211, 11212, 11221, 11222, 11223, 11231, 11232, 11233, 11234, 12111, 12112, 12121
OFFSET
1,2
LINKS
S. Giraudo, Combinatorial operads from monoids, arXiv preprint arXiv:1306.6938 [math.CO], 2013-2015. See Sect. 3.1.3.
MAPLE
R[1]:= [1]:
for d from 2 to 6 do
R[d]:= map(t -> seq(10*t+j, j=1..min((t mod 10)+1, 9)), R[d-1])
od:
A:= map(op, [seq(R[d], d=1..6)]); # Robert Israel, Jan 31 2017
MATHEMATICA
desQ[n_]:=Module[{idn=IntegerDigits[n]}, idn[[1]]==1&&FreeQ[idn, 0]&&Max[ Differences[ idn]]<2]; Select[Range[13000], desQ] (* Harvey P. Dale, Feb 19 2017 *)
CROSSREFS
Essentially the same as A071157 but with digits reversed.
Corresponding Łukasiewicz words: A071153.
Sequence in context: A153070 A193023 A278985 * A231873 A096299 A110382
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 14 2002
STATUS
approved