login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations that avoid the generalized pattern 123-4.
4

%I #43 Mar 24 2024 03:17:16

%S 1,1,2,6,23,108,598,3815,27532,221708,1970251,19150132,202064380,

%T 2300071071,28092017668,366425723926,5083645400819,74745472084176,

%U 1160974832572274,18995175706664735,326531476287842760,5883736110875887560,110893188848753125475

%N Number of permutations that avoid the generalized pattern 123-4.

%H Alois P. Heinz, <a href="/A071076/b071076.txt">Table of n, a(n) for n = 0..450</a>

%H A. M. Baxter, <a href="https://www.semanticscholar.org/paper/Algorithms-for-permutation-statistics-Zeilberger-Baxter/2c5d79e361d3aecb25c380402144177ad7cd9dc8">Algorithms for Permutation Statistics</a>, Ph. D. Dissertation, Rutgers University, May 2011.

%H Andrew M. Baxter and Lara K. Pudwell, <a href="http://arxiv.org/abs/1108.2642">Enumeration schemes for dashed patterns</a>, arXiv preprint arXiv:1108.2642 [math.CO], 2011.

%H Sergey Kitaev, <a href="https://web.archive.org/web/20040902121307/http://www.ms.uky.edu/~kitaev/index_files/Papers/partial_order_patterns_perm.pdf">Partially Ordered Generalized Patterns</a>, preprint.

%H Sergey Kitaev, <a href="http://dx.doi.org/10.1016/j.disc.2004.03.017">Partially Ordered Generalized Patterns</a>, Discrete Math. 298 (2005), no. 1-3, 212-229.

%F E.g.f.: exp(int(A(y), y=0..x)), where A(y) = (sqrt(3)/2)*exp(y/2)/cos((sqrt(3)/2)*y + Pi/6).

%F Let b(n) = A049774(n) = number of permutations of [n] that avoid the consecutive pattern 123. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i)*b(i)*a(n-1-i) with a(0) = b(0) = 1. [See the recurrence for A_n and B_n in the proof of Theorem 13 in Kitaev's papers.] -

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(

%p `if`(t=1 and o>j, 0, b(u+j-1, o-j, t+1)), j=1..o)+

%p add(b(u-j, o+j-1, 0), j=1..u))

%p end:

%p a:= n-> b(n, 0$2):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Nov 14 2015

%t b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 1 && o > j, 0, b[u + j - 1, o - j, t + 1]], {j, 1, o}] + Sum[b[u - j, o + j - 1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Feb 01 2016, after _Alois P. Heinz_ *)

%Y Cf. A049774, A071088, A071075, A071077.

%K nonn

%O 0,3

%A _Sergey Kitaev_, May 26 2002

%E More terms from _Vladeta Jovovic_, May 28 2002

%E Link added by _Andrew Baxter_, May 17 2011

%E Typos in formula corrected by _Vaclav Kotesovec_, Aug 23 2014