login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 1's in n-th row of triangle in A071035.
4

%I #58 Jan 09 2025 03:16:17

%S 1,3,4,7,4,8,8,15,4,8,8,16,8,16,16,31,4,8,8,16,8,16,16,32,8,16,16,32,

%T 16,32,32,63,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32,64,8,16,16,32,16,

%U 32,32,64,16,32,32,64,32,64,64,127,4,8,8,16,8,16,16,32,8,16

%N Number of 1's in n-th row of triangle in A071035.

%C Number of ON cells at generation n of 1-D CA defined by Rule 126, starting with a single ON cell. - _N. J. A. Sloane_, Aug 09 2014

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

%H Robert Price, <a href="/A071051/b071051.txt">Table of n, a(n) for n = 0..1000</a>

%H A. J. Macfarlane, <a href="http://www.damtp.cam.ac.uk/user/ajm/Papers2016/GFsForCAsOfEvenRuleNo.ps">Generating functions for integer sequences defined by the evolution of cellular automata...</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.

%H S. Wolfram, <a href="http://dx.doi.org/10.1103/RevModPhys.55.601">Statistical mechanics of cellular automata</a>, Rev. Mod. Phys., 55 (1983), 601--644.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%F a(2n) = a(n)+A036987(n); a(2n+1) = a(n)+2*2^A000120(n). - _Benoit Cloitre_, Sep 22 2003

%F a(n) = 2^(1+wt(n)) unless n is of the form 2^i-1 in which case we must subtract 1, where wt = A000120. - _N. J. A. Sloane_, Aug 09 2014

%F G.f.: 2*Product_{k>=0} (1+2*x^(2^k)) - Sum_{k>=0} x^(2^k-1). - _N. J. A. Sloane_, Aug 09 2014

%e [Contribution from _Omar E. Pol_, Dec 11 2010] (Start)

%e May be arranged in blocks of sizes 1, 1, 2, 4, 8, 16, 32, ...:

%e 1,

%e 3,

%e 4, 7,

%e 4, 8, 8, 15,

%e 4, 8, 8, 16, 8, 16, 16, 31,

%e 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32, 32, 63,

%e Last terms of rows give positive terms of A000225.

%e (End)

%t a[n_] := 2^(DigitCount[n, 2, 1]+1) - Boole[IntegerQ[Log[2, n+1]]];

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Oct 02 2018, from 2nd formula *)

%Y Cf. A001316, A000120, A036987, A000225.

%K nonn,changed

%O 0,2

%A _Hans Havermann_, May 26 2002