Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 14 2015 18:58:06
%S 0,0,0,2,8,40,200,980,5152,28448,162080,979000,6179360,40575392,
%T 279199648,1997406320,14825619200,114365751040,912510870272,
%U 7521873125408,64045101880960,561615674345600,5067769601121920,47023128008540992,447820056115824128
%N Number of permutations in the symmetric group S_n such that the maximal cycle has length exactly 3.
%C E.g.f.: exp( x + (x^2)/2 + (x^3)/3 ) - exp( x + (x^2)/2 ).
%H Alois P. Heinz, <a href="/A071007/b071007.txt">Table of n, a(n) for n = 0..250</a>
%F a(n) = A057693(n) - A000085(n).
%t nn=20;Range[0,nn]!CoefficientList[Series[Exp[x+x^2/2+x^3/3]-Exp[x+x^2/2],{x,0,nn}],x] (* _Geoffrey Critzer_, Jan 23 2013 *)
%o (PARI) for(n=0,25,print1(polcoeff(serlaplace(exp(x+x^2/2+x^3/3)-exp(x+x^2/2)),n)","))
%Y Cf. A057693, A000085, A027617.
%Y Column k=3 of A126074.
%K nonn
%O 0,4
%A Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
%E More terms from _Ralf Stephan_, Apr 09 2003