login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cycles in the complete bipartite graph K(n,n).
9

%I #35 Feb 25 2023 02:28:13

%S 0,1,15,204,3940,113865,4662231,256485040,18226108944,1623855701385,

%T 177195820499335,23237493232953516,3605437233380095620,

%U 653193551573628900289,136634950180317224866335,32681589590709963123092160,8863149183726257535369633856

%N Number of cycles in the complete bipartite graph K(n,n).

%C Also the number of chordless cycles in the n X n rook graph. - _Eric W. Weisstein_, Nov 27 2017

%H Andrew Howroyd, <a href="/A070968/b070968.txt">Table of n, a(n) for n = 1..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChordlessCycle.html">Chordless Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>

%F a(n) = Sum_{k=2..n} C(n,k)^2 * k! * (k-1)! / 2.

%F Recurrence: (n-2)^2*(2*n^3 - 19*n^2 + 58*n - 59)*a(n) = 2*(2*n^7 - 31*n^6 + 200*n^5 - 700*n^4 + 1442*n^3 - 1764*n^2 + 1205*n - 363)*a(n-1) - (n-1)^2*(2*n^7 - 35*n^6 + 266*n^5 - 1139*n^4 + 2962*n^3 - 4671*n^2 + 4130*n - 1578)*a(n-2) + 2*(n-2)^2*(n-1)^2*(2*n^5 - 26*n^4 + 134*n^3 - 342*n^2 + 431*n - 217)*a(n-3) - (n-3)^2*(n-2)^2*(n-1)^2*(2*n^3 - 13*n^2 + 26*n - 18)*a(n-4). - _Vaclav Kotesovec_, Mar 08 2016

%F a(n) ~ c * n! * (n-1)!, where c = BesselI(0,2)/2 = 1.1397926511680336337186... . - _Vaclav Kotesovec_, Mar 08 2016

%p seq(simplify((1/4)*hypergeom([1, 2, 2-n, 2-n], [3], 1)*(n-1)^2*n^2), n=1..20); # _Robert Israel_, Jan 09 2018

%t Table[Sum[Binomial[n, k]^2*k!*(k - 1)!, {k, 2, n}]/2, {n, 1, 17}]

%t Table[n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, 1] - 1)/2, {n, 20}] (* _Eric W. Weisstein_, Dec 14 2017 *)

%o (PARI) for(n=1,50,print1(sum(k=2,n,binomial(n,k)^2 * k! * (k-1)!/2),","))

%Y Row sums of A291909.

%Y Main diagonal of A360849.

%Y Cf. A002807, A068087, A288035.

%K nonn

%O 1,3

%A Sharon Sela (sharonsela(AT)hotmail.com), May 17 2002

%E More terms from _Benoit Cloitre_ and _Robert G. Wilson v_, May 20 2002

%E a(16)-a(17) from _Andrew Howroyd_, Jan 08 2018