login
Smallest integer >= 0 of the form x^2 - n^3.
6

%I #18 Mar 07 2022 15:47:59

%S 0,0,1,9,0,19,9,18,17,0,24,38,36,12,65,106,0,128,97,30,100,148,168,

%T 154,100,0,113,198,249,260,225,138,356,163,297,389,0,423,353,217,9,

%U 248,441,17,80,79,8,506,297,0,316,574,17,119,145,89,784,568,252,737,225,548

%N Smallest integer >= 0 of the form x^2 - n^3.

%C a(n)=0 iff n is a square.

%F a(n) = ceiling(n^(3/2))^2 - n^3 = A077115(n) - n^3.

%e A077115(10) = 1024 = 32^2 is the least square >= 10^3 = 1000, therefore a(10) = 1024 - 1000 = 24.

%t f[n_]=Ceiling[n^(3/2)]^2-n^3;

%t t1=Table[f[n], {n, 1, 90}]; t1 (* _Clark Kimberling_, Jan 30 2011 *)

%o (PARI) for(n=1,100,print1(ceil(n^(3/2))^2-n^3,","))

%Y Cf. A000578, A077116, A077118, A077119, A070923, A068527.

%K easy,nonn

%O 0,4

%A _Benoit Cloitre_, May 20 2002