login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Card{ (x,y,z) | lcm(x,y,z)=n }.
8

%I #46 Sep 03 2023 08:45:05

%S 1,7,7,19,7,49,7,37,19,49,7,133,7,49,49,61,7,133,7,133,49,49,7,259,19,

%T 49,37,133,7,343,7,91,49,49,49,361,7,49,49,259,7,343,7,133,133,49,7,

%U 427,19,133,49,133,7,259,49,259,49,49,7,931,7,49,133,127,49,343,7,133

%N a(n) = Card{ (x,y,z) | lcm(x,y,z)=n }.

%C A048691(n) gives Card{ (x,y) | lcm(x,y)=n }.

%H Antti Karttunen, <a href="/A070919/b070919.txt">Table of n, a(n) for n = 1..10000</a>

%H O. Bagdasar, <a href="https://doi.org/10.5937/SPSUNP1402091B">On some functions involving the lcm and gcd of integer tuples</a>, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91-100.

%F a(n) = Sum_{d|n} A000005(d)^3*A008683(n/d).

%F Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^3/k^s.

%F Multiplicative with a(p^e) = 1+3*e+3*e^2 for prime p and e >= 0. - _Werner Schulte_, Nov 30 2018

%t Join[{1},Table[Product[(k + 1)^3 - k^3, {k, FactorInteger[n][[All, 2]]}], {n,2, 68}]] (* _Geoffrey Critzer_, Jan 10 2015 *)

%o (PARI) for(n=1,100,print1(sumdiv(n,d,numdiv(d)^3*moebius(n/d)),","))

%o (PARI) a(n) = vecprod(apply(x->(x+1)^3-x^3, factor(n)[, 2])); \\ _Amiram Eldar_, Sep 03 2023

%Y Cf. A000005, A008683, A048691, A070920, A070921, A086222, A247513.

%K mult,easy,nonn

%O 1,2

%A _Benoit Cloitre_, May 20 2002