

A070884


7 + x where x is congruent to {0, 4, 6, 10, 12, 16, 22, 24} mod 30.


1



7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 203, 209, 211, 217, 221
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Sequence contains many primes.
A007775 without the first term. Strictly speaking, the sequence should include the 1, because 1=76 and 6 = 24 mod 30. [From R. J. Mathar, Sep 25 2008]


LINKS



FORMULA

G.f.: ( 7+4*x+2*x^2+4*x^3+2*x^4+4*x^5+6*x^6+2*x^7x^8 ) / ( (1+x)*(x^2+1)*(x^4+1)*(x1)^2 ).  R. J. Mathar, Sep 22 2016


EXAMPLE

7+0=7, 7+4=11, 7+6=13, 7+10=17, 7+12=19, 7+16=23, ...


PROG

(Perl) $a = 0; while ((($a % 30 == 0 or $a % 30 == 4 or $a % 30 == 6 or $a % 30 == 10 or $a % 30 == 12 or $a % 30 == 16 or $a % 30 == 22 or $a % 30 == 24) and eval("print \"\".(7+\$a).\" \"; return 0; ")) or ++$a) { }


CROSSREFS



KEYWORD

easy,nonn


AUTHOR

Timothy McAlee Sr., May 24 2002


EXTENSIONS

More terms from Jim McCann (jmccann(AT)umich.edu), Jul 17 2002


STATUS

approved



