login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070884
7 + x where x is congruent to {0, 4, 6, 10, 12, 16, 22, 24} mod 30.
1
7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 203, 209, 211, 217, 221
OFFSET
0,1
COMMENTS
Sequence contains many primes.
A007775 without the first term. Strictly speaking, the sequence should include the 1, because 1=7-6 and -6 = 24 mod 30. [From R. J. Mathar, Sep 25 2008]
FORMULA
G.f.: ( 7+4*x+2*x^2+4*x^3+2*x^4+4*x^5+6*x^6+2*x^7-x^8 ) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^2 ). - R. J. Mathar, Sep 22 2016
EXAMPLE
7+0=7, 7+4=11, 7+6=13, 7+10=17, 7+12=19, 7+16=23, ...
PROG
(Perl) $a = 0; while ((($a % 30 == 0 or $a % 30 == 4 or $a % 30 == 6 or $a % 30 == 10 or $a % 30 == 12 or $a % 30 == 16 or $a % 30 == 22 or $a % 30 == 24) and eval("print \"\".(7+\$a).\" \"; return 0; ")) or ++$a) { }
CROSSREFS
Sequence in context: A322272 A161850 A007775 * A135777 A090459 A090417
KEYWORD
easy,nonn
AUTHOR
Timothy McAlee Sr., May 24 2002
EXTENSIONS
More terms from Jim McCann (jmccann(AT)umich.edu), Jul 17 2002
STATUS
approved