login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of all possible distinct numbers obtained as a product of distinct numbers from 1..n.
5

%I #28 Aug 01 2022 12:40:59

%S 1,1,1,2,1,2,3,6,1,2,3,4,6,8,12,24,1,2,3,4,5,6,8,10,12,15,20,24,30,40,

%T 60,120,1,2,3,4,5,6,8,10,12,15,18,20,24,30,36,40,48,60,72,90,120,144,

%U 180,240,360,720,1,2,3,4,5,6,7,8,10,12,14,15,18,20,21,24,28,30,35,36,40,42

%N Triangle of all possible distinct numbers obtained as a product of distinct numbers from 1..n.

%C Factorials are a subsequence (A000142). - _Reinhard Zumkeller_, Jul 02 2011

%C More generally, all sequences of positive integers are subsequences. - _Charles R Greathouse IV_, Mar 06 2017

%H Reinhard Zumkeller, <a href="/A070861/b070861.txt">Rows n = 0..20 of triangle, flattened</a>

%F T(n,A060957(n)) = A000142(n) = n!. - _Alois P. Heinz_, Aug 01 2022

%e Triangle begins:

%e 1;

%e 1;

%e 1, 2;

%e 1, 2, 3, 6;

%e 1, 2, 3, 4, 6, 8, 12, 24;

%e ...

%p T:= proc(n) option remember; `if`(n=0, 1,

%p sort([map(x-> [x, x*n][], {T(n-1)})[]])[])

%p end:

%p seq(T(n), n=0..7); # _Alois P. Heinz_, Aug 01 2022

%t row[n_] := Times @@@ Subsets[Range[n]] // Flatten // Union; Table[row[n], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Feb 02 2015 *)

%o (Haskell)

%o a070861 n = a070861_list !! (n-1)

%o a070861_list = concat a070861_tabf

%o a070861_tabf = [1] : f 2 [1] where

%o f n ps = ps' : f (n+1) ps' where ps' = m ps $ map (n*) ps

%o m [] ys = ys

%o m xs'@(x:xs) ys'@(y:ys)

%o | x < y = x : m xs ys'

%o | x == y = x : m xs ys

%o | otherwise = y : m xs' ys

%o b070861 = bFile' "A070861" (concat $ take 20 a070861_tabf) 1

%o -- _Reinhard Zumkeller_, Jul 02 2011

%o (PARI) row(n)=my(v=[2..n]); Set(vector(2^(n-1),i, factorback(vecextract(v,i-1)))) \\ _Charles R Greathouse IV_, Mar 06 2017

%Y Cf. A000142, A060957.

%Y Row sums give A070863.

%Y Row products give A283261.

%K nonn,tabf

%O 0,4

%A _Amarnath Murthy_, May 16 2002

%E Corrected and extended by _Lior Manor_ May 23 2002

%E Row n=0 prepended by _Alois P. Heinz_, Aug 01 2022