login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let M denote the 6 X 6 matrix = row by row /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = u(n).
6

%I #18 Sep 08 2022 08:45:06

%S 1,2,11,41,176,721,3003,12439,51623,214103,888173,3684174,15282475,

%T 63393324,262962987,1090800411,4524765831,18769248040,77856998326,

%U 322959774150,1339674254489,5557122741105,23051583675890,95620617831960,396645310086831,1645330322871807

%N Let M denote the 6 X 6 matrix = row by row /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = u(n).

%H Vincenzo Librandi, <a href="/A070778/b070778.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-4,-5,1,1).

%F a(n) = 2*A006359(n-1) - A006359(n-3) for n > 2.

%F G.f.: (x^2 + x - 1) / (x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1). - _Colin Barker_, Jun 14 2013

%F a(n) = 3*a(n-1) + 6*a(n-2) - 4*a(n-3) - 5*a(n-4) + a(n-5) + a(n-6). - _Wesley Ivan Hurt_, Oct 09 2017

%p a:= n-> (Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[5, 1]:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 14 2013

%t CoefficientList[Series[(x^2 + x - 1)/(x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Oct 09 2017 *)

%t LinearRecurrence[{3, 6, -4, -5, 1, 1}, {1, 2, 11, 41, 176, 721}, 30] (* _Vincenzo Librandi_, Oct 10 2017 *)

%o (Magma) I:=[1,2,11,41,176,721]; [n le 6 select I[n] else 3*Self(n-1)+6*Self(n-2)-4*Self(n-3)-5*Self(n-4)+Self(n-5)+Self(n-6): n in [1..30]]; // _Vincenzo Librandi_, Oct 10 2017

%Y Cf. A006359, A069007, A069008, A069009, A070778, A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).

%K easy,nonn

%O 0,2

%A _Henry Bottomley_, May 06 2002