Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Apr 20 2024 23:50:44
%S 1,1,1,4,20,90,630,3360,30240,226800,2494800,23950080,311351040,
%T 3632428800,54486432000,747242496000,12703122432000,200074178304000,
%U 3801409387776000,67580611338240000,1419192838103040000,28100018194440192000,646300418472124416000
%N Size of largest conjugacy class in A_n, the alternating group on n symbols.
%C For n > 5, the largest conjugacy class in A_n corresponds to the cycle type (n-2, 2) if n is even, (n-3, 2, 1) if n is odd. - _Eric M. Schmidt_, Sep 13 2014
%H Eric M. Schmidt, <a href="/A070733/b070733.txt">Table of n, a(n) for n = 1..100</a>
%F For n > 5, a(n) = n!/(2(n-2)) if n is even, a(n) = n!/(2(n-3)) if n is odd. - _Eric M. Schmidt_, Sep 13 2014
%o (GAP)
%o a:=function(n)
%o local G,CC,SCC,SCC1;
%o G:=AlternatingGroup(n);
%o CC:=ConjugacyClasses(G);;
%o SCC:=List(CC,Size);
%o return Maximum(SCC);
%o end;; # _W. Edwin Clark_, Feb 02 2014
%Y Cf. A059171, A001710, A000702, A029726.
%K nonn
%O 1,4
%A Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002
%E More terms from _Eric M. Schmidt_, Sep 13 2014