login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest prime factor of sequence of numbers of the form p*q (p, q distinct primes).
12

%I #23 Oct 28 2024 09:36:02

%S 3,5,7,5,7,11,13,11,17,7,19,13,23,17,11,19,29,31,13,23,37,11,41,17,43,

%T 29,13,31,47,19,53,37,23,59,17,61,41,43,19,67,47,71,13,29,73,31,79,53,

%U 23,83,59,89,61,37,17,97,67,101,29,41,103,19,71,107,43,31,109,73,17

%N Largest prime factor of sequence of numbers of the form p*q (p, q distinct primes).

%H Reinhard Zumkeller, <a href="/A070647/b070647.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = P(A006881(n)) where P(x) = A006530(x) is the largest prime factor of x.

%F a(n) = A006881(n)/A096916(n). - _Amiram Eldar_, Oct 28 2024

%e 6 = 2*3 is the first number of the form p*q (p, q distinct primes) hence a(1) = 3.

%t f[n_]:=Last/@FactorInteger[n]=={1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f2[n]]],{n,0,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Apr 10 2010 *)

%o (Haskell)

%o a070647 = a006530 . a006881 -- _Reinhard Zumkeller_, Sep 23 2011

%o (PARI) go(x)=my(v=List()); forprime(p=2, sqrtint(x\1), forprime(q=p+1, x\p, listput(v, [p*q,q]))); apply(v->v[2], vecsort(Vec(v),1)) \\ _Charles R Greathouse IV_, Sep 14 2015

%Y Cf. A006530, A006881, A084127, A096916, A195758.

%K easy,nonn

%O 1,1

%A _Benoit Cloitre_, May 13 2002