This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070471 a(n) = n^3 mod 5. 3
 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Decimal expansion of 1324/99999. - Vincenzo Librandi, Dec 09 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1). FORMULA a(n) = A070690(n). - Zerinvary Lajos, Oct 29 2009 G.f.: -x*(1+3*x+2*x^2+4*x^3) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Dec 10 2010 a(n) = a(n-5). - G. C. Greubel, Mar 26 2016 MATHEMATICA CoefficientList[Series[-x (1 + 3 x + 2 x^2 + 4 x^3)/((x - 1) (1 + x + x^2 + x^3 + x^4)), {x, 0, 100}], x] (* Vincenzo Librandi, May 21 2014 *) PowerMod[Range[0, 100], 3, 5] (* G. C. Greubel, Mar 26 2016 *) Table[If[Mod[n, 5] == 0, 0, ModularInverse[n, 5]], {n, 0, 100}] (* Jean-François Alcover, May 03 2017 *) PROG (Sage) [power_mod(n, 3, 5) for n in (0..101)] # Zerinvary Lajos, Oct 29 2009 (PARI) x='x+O('x^99); concat(0, Vec(-x*(1+3*x+2*x^2+4*x^3)/((x-1)*(1+x+x^2+x^3+x^4)))) \\ Altug Alkan, Mar 27 2016 CROSSREFS Sequence in context: A143932 A304496 A195258 * A070690 A160387 A129237 Adjacent sequences:  A070468 A070469 A070470 * A070472 A070473 A070474 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 20:33 EST 2019. Contains 319310 sequences. (Running on oeis4.)