login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7^n mod 32.
1

%I #37 Dec 27 2023 08:37:57

%S 1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,

%T 23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,

%U 17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23,1,7,17,23

%N a(n) = 7^n mod 32.

%H G. C. Greubel, <a href="/A070416/b070416.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1).

%F From _R. J. Mathar_, Apr 20 2010: (Start)

%F a(n) = a(n-4).

%F G.f.: ( -1 - 7*x - 17*x^2 - 23*x^3 ) / ( (x-1)*(1+x)*(1+x^2) ). (End)

%F E.g.f.: 9*cosh(x) + 15*sinh(x) - 8*cos(x) - 8*sin(x). - _G. C. Greubel_, Mar 20 2016

%t PowerMod[7, Range[0, 50], 32] (* _G. C. Greubel_, Mar 20 2016 *)

%o (Sage) [power_mod(7,n,32)for n in range(0,84)] # _Zerinvary Lajos_, Nov 27 2009

%o (PARI) a(n) = lift(Mod(7, 32)^n); \\ _Altug Alkan_, Mar 20 2016

%o (Magma) [Modexp(7, n, 32): n in [0..100]]; // _Bruno Berselli_, Mar 22 2016

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, May 12 2002