login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070409
a(n) = 7^n mod 23.
1
1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20
OFFSET
0,2
COMMENTS
Periodic with period 22. - Joerg Arndt, Feb 24 2015
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-11) + a(n-12).
G.f.: ( -1 - 6*x + 4*x^2 - 18*x^3 + 12*x^4 - 8*x^5 + 13*x^6 - x^7 - 7*x^8 - 3*x^9 + 2*x^10 - 10*x^11 ) / ( (x-1)*(1+x)*(x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) ). (End)
a(n) = A000420(n) mod 23. - Michel Marcus, Feb 24 2015
MATHEMATICA
Table[PowerMod[7, n, 23], {n, 0, 79}] (* Alonso del Arte, Feb 23 2015 *)
CoefficientList[Series[(- 1 - 6 x + 4 x^2 - 18 x^3 + 12 x^4 - 8 x^5 + 13 x^6 - x^7 - 7 x^8 - 3 x^9 + 2 x^10 - 10 x^11) / ((x - 1) (1 + x) (x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)), {x, 0, 80}], x] (* Vincenzo Librandi, Feb 26 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22}, 80] (* Ray Chandler, Aug 27 2015 *)
PROG
(Sage) [power_mod(7, n, 23) for n in range(0, 80)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n) = lift(Mod(7, 23)^n); \\ Michel Marcus, Feb 23 2015
(Magma) I:=[1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22]; [n le 12 select I[n] else Self(n-1)-Self(n-11)+Self(n-12): n in [1..70]]; // Vincenzo Librandi, Feb 26 2015
(Magma) [Modexp(7, n, 23): n in [0..100]]; // Bruno Berselli, Mar 22 2016
CROSSREFS
Sequence in context: A160797 A050013 A161417 * A166481 A050012 A271573
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved