login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(2) = 2; a(n) = [sum of digits of a(n-1)]^[sum of digits of a(n-2)] for n > 2.
1

%I #5 Feb 11 2014 19:05:28

%S 1,2,2,4,16,2401,823543,6103515625,

%T 193630125104980427932766033374162714624,

%U 121679161406852748316898260838871037524995421354288562472420444438058627601

%N a(1) = 1; a(2) = 2; a(n) = [sum of digits of a(n-1)]^[sum of digits of a(n-2)] for n > 2.

%C The next term, a(11), has 381 digits. - _Harvey P. Dale_, Jan 08 2013

%t a[n_] := (Plus @@ IntegerDigits[a[n - 1]])^(Plus @@ IntegerDigits[a[n - 2]]); a[1] = 1; a[2] = 2; Table[ a[n], {n, 1, 10}]

%t nxt[{a_,b_}]:={b,Total[IntegerDigits[b]]^Total[IntegerDigits[a]]}; Transpose[ NestList[nxt,{1,2},10]][[1]] (* _Harvey P. Dale_, Jan 08 2013 *)

%K base,nonn

%O 1,2

%A _Joseph L. Pe_, May 09 2002

%E Edited by _Robert G. Wilson v_, May 14 2002