login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of isosceles integer triangles with perimeter n having integral inradius.
5

%I #17 Jan 10 2023 03:17:55

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,

%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N Number of isosceles integer triangles with perimeter n having integral inradius.

%C a(n) = A070201(n) - A070203(n).

%H Seiichi Manyama, <a href="/A070204/b070204.txt">Table of n, a(n) for n = 1..5000</a>

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/25678790">Solution to Problem S125: Circumradius and Inradius</a>, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Incircle.html">Incircle</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IsoscelesTriangle.html">Isosceles Triangle</a>.

%H R. Zumkeller, <a href="/A070080/a070080.txt">Integer-sided triangles</a>

%Y Cf. A070139, A059169.

%K nonn

%O 1,108

%A _Reinhard Zumkeller_, May 05 2002