login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer triangles with perimeter n having integral inradius.
11

%I #28 Oct 29 2020 03:27:34

%S 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,

%T 0,2,0,0,0,1,0,2,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,3,0,0,0,2,0,1,0,1,

%U 0,2,0,2,0,0,0,1,0,1,0,2,0,0,0,8,0,0,0,1,0,3

%N Number of integer triangles with perimeter n having integral inradius.

%C a(n) = #{k | A070083(k) = n and A070200(k) = exact inradius};

%C a(n) = A070203(n) + A070204(n);

%C a(n) = A070205(n) + A070206(n) + A024155(n);

%C a(odd) = 0.

%H Seiichi Manyama, <a href="/A070201/b070201.txt">Table of n, a(n) for n = 1..5000</a>

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/25678790">Solution to Problem S125: Circumradius and Inradius</a>, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Incircle.html">Incircle</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeronsFormula.html">Heron's Formula</a>.

%H Reinhard Zumkeller, <a href="/A070080/a070080.txt">Integer-sided triangles</a>

%e a(36)=2, as there are two integer triangles with integer inradius having perimeter=32:

%e First: [A070080(368), A070081(368), A070082(368)] = [9,10,17], for s = A070083(368)/2 = (9+10+17)/2 = 18: inradius = sqrt((s-9)*(s-10)*(s-17)/s) = sqrt(9*8*1/18) = sqrt(4) = 2; therefore A070200(368) = 2.

%e 2nd: [A070080(370), A070081(370), A070082(370)] = [9,12,15], for s = A070083(370)/2 = (9+12+15)/2 = 18: inradius = sqrt((s-9)*(s-12)*(s-15)/s) = sqrt(9*6*3/18) = sqrt(9) = 3; therefore A070200(370) = 3.

%o (Ruby)

%o def A(n)

%o cnt = 0

%o (1..n / 3).each{|a|

%o (a..(n - a) / 2).each{|b|

%o c = n - a - b

%o if a + b > c

%o s = n / 2r

%o t = (s - a) * (s - b) * (s - c) / s

%o if t.denominator == 1

%o t = t.to_i

%o cnt += 1 if Math.sqrt(t).to_i ** 2 == t

%o end

%o end

%o }

%o }

%o cnt

%o end

%o def A070201(n)

%o (1..n).map{|i| A(i)}

%o end

%o p A070201(100) # _Seiichi Manyama_, Oct 06 2017

%Y Cf. A070209, A070202, A070208, A005044, A070140.

%Y Cf. A120062, A120572, A331040.

%K nonn

%O 1,36

%A _Reinhard Zumkeller_, May 05 2002