login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070187
Primes p such that x^11 = 2 has a solution mod p, but x^(11^2) = 2 has no solution mod p.
3
12101, 13553, 30493, 32429, 44771, 66067, 103577, 128987, 180533, 182711, 187793, 201829, 242243, 257489, 264749, 299113, 314359, 330331, 337349, 341947, 356467, 371471, 431729, 442619, 475289, 484243, 505781, 513767, 540871, 558053, 564103, 573299, 581527, 582011, 586367, 593869, 596047, 630169
OFFSET
1,1
PROG
(PARI) forprime(p=2, 550000, x=0; while(x<p&&x^11%p!=2%p, x++); if(x<p, y=0; while(y<p&&y^(11^2)%p!=2%p, y++); if(y==p, print1(p, ", "))))
(PARI)
N=10^6; default(primelimit, N);
ok(p, r, k1, k2)={
if ( Mod(r, p)^((p-1)/gcd(k1, p-1))!=1, return(0) );
if ( Mod(r, p)^((p-1)/gcd(k2, p-1))==1, return(0) );
return(1);
}
forprime(p=2, N, if (ok(p, 2, 11, 11^2), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Apr 29 2002
STATUS
approved