login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let s(n) be smallest number >= n which is a sum of two squares (A001481); sequence gives s(n) - n.
4

%I #22 Dec 15 2017 17:35:52

%S 0,0,0,1,0,0,2,1,0,0,0,2,1,0,2,1,0,0,0,1,0,4,3,2,1,0,0,2,1,0,2,1,0,1,

%T 0,1,0,0,2,1,0,0,3,2,1,0,3,2,1,0,0,1,0,0,4,3,2,1,0,2,1,0,2,1,0,0,2,1,

%U 0,3,2,1,0,0,0,5,4,3,2,1,0,0,0,2,1,0,3,2,1,0,0,6,5,4,3,2,1,0,0,1,0,0,2,1,0

%N Let s(n) be smallest number >= n which is a sum of two squares (A001481); sequence gives s(n) - n.

%C It is an unsolved problem to determine the rate of growth of this sequence.

%C a(A001481(n)) = 0; a(A022544(n)) > 0. [_Reinhard Zumkeller_, Feb 04 2012]

%D H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.

%H T. D. Noe, <a href="/A070176/b070176.txt">Table of n, a(n) for n = 0..10000</a>

%t sumOfTwoSquaresQ[n_] := With[{r = Ceiling[Sqrt[n]]}, Do[ Which[n == x^2 + y^2, Return[True], x == r && y == r, Return[False]], {x, 0, r}, {y, x, r}]]; a[n_] := For[s = n, True, s++, If[sumOfTwoSquaresQ[s], Return[s - n]]]; Table[a[n], {n, 0, 104}](* _Jean-François Alcover_, May 23 2012 *)

%t s2s[n_]:=Module[{i=0},While[SquaresR[2,n+i]==0,i++];i]; Array[s2s,110,0] (* _Harvey P. Dale_, Jun 16 2012 *)

%o (Haskell)

%o a070176 n = (head $ dropWhile (< n) a001481_list) - n

%o a070176_list = map a070176 [0..]

%o -- _Reinhard Zumkeller_, Feb 04 2012

%K nonn,easy,nice

%O 0,7

%A _N. J. A. Sloane_, May 13 2002

%E More terms from _Jason Earls_, Jun 15 2002