|
|
A070148
|
|
Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer Heronian triangle having triangular area.
|
|
2
|
|
|
17, 368, 659, 972, 1156, 1599, 1971, 2555, 2574, 3746, 3818, 4298, 4330, 5374, 14325, 14414, 15004, 15943, 16451, 19475, 19615, 24013, 24051, 33950, 63593, 71630, 75052, 79286, 79670, 79921, 84183, 90187, 93290
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Jean-François Alcover, Table of n, a(n) for n = 1..89
Eric Weisstein's World of Mathematics, Heronian Triangle.
Eric Weisstein's World of Mathematics, Right Triangle.
Reinhard Zumkeller, Integer-sided triangles
|
|
EXAMPLE
|
17 is a term: [A070080(17), A070081(17), A070082(17)] = [3,4,5]: A070086(52)=6.
|
|
MATHEMATICA
|
m = 500 (* max perimeter *);
sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
area[{a_, b_, c_}] := With[{p = (a + b + c)/2}, Sqrt[p(p-a)(p-b)(p-c)]];
Position[triangles, {a_, b_, c_} /; IntegerQ[area[{a, b, c}]] && IntegerQ[Sqrt[1 + 8 area[{a, b, c}]]]] // Flatten (* Jean-François Alcover, Oct 04 2021 *)
|
|
CROSSREFS
|
Cf. A070142, A000217.
Sequence in context: A222678 A293691 A002197 * A097499 A132541 A159244
Adjacent sequences: A070145 A070146 A070147 * A070149 A070150 A070151
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, May 05 2002
|
|
STATUS
|
approved
|
|
|
|