login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Areas of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.
14

%I #25 Oct 04 2021 07:23:32

%S 0,1,2,1,2,3,2,3,4,4,4,2,4,4,6,5,6,7,3,5,5,7,8,6,7,8,9,3,6,6,9,7,10,

%T 11,7,9,10,11,12,4,6,8,10,8,12,12,14,8,10,12,13,12,15,16,4,7,9,12,10,

%U 14,10,15,16,17,9,12,13,15,14,17,18,19,5,8,10

%N Areas of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.

%C Triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))] have integer areas = a(A070142(k)) = A070149(k).

%H Jean-François Alcover, <a href="/A070086/b070086.txt">Table of n, a(n) for n = 1..972</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeronsFormula.html">Heron's Formula</a>.

%H Reinhard Zumkeller, <a href="/A070080/a070080.txt">Integer-sided triangles</a>

%F a(n) = sqrt(s*(s-u)*(s-v)*(s-w)), where u=A070080(n), v=A070081(n), w=A070082(n) and s = A070083(n)/2 = (u+v+w)/2.

%e [A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt(s*(s-3)*(s-5)*(s-6)) = sqrt(7*(7-3)*(7-5)*(7-6)) = sqrt(7*4*2*1) = sqrt(56) = 7.48331, rounded = 7.

%t m = 50; (* max perimeter *)

%t sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];

%t triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];

%t area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)] // Round];

%t area /@ triangles (* _Jean-François Alcover_, Oct 03 2021 *)

%Y Cf. A051516, A055595, A069596, A069594, A046131.

%K nonn

%O 1,3

%A _Reinhard Zumkeller_, May 05 2002