login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070056
Number of Bottleneck-Monge matrices with 8 rows.
7
256, 3327, 28606, 196301, 1158554, 6121871, 29688844, 134361100, 574209267, 2337788346, 9128782573, 34372098576, 125327730017, 444081743234, 1533640995983, 5174881667481, 17096446731321, 55402030270777, 176377009761145, 552397160169465, 1704039417961465, 5183132984363513, 15559823619750905, 46141145945628665
OFFSET
1,1
COMMENTS
Bottleneck-Monge matrices are {0,1} matrices A in which, for every i<j and k<l, max(A[i,l],A[j,k]) <= max(A[i,k],A[j,l]).
LINKS
FORMULA
a(N) = a(8, N), where a(P, N) is defined recursively in A070050.
G.f.: x*(256 - 4609*x + 40669*x^2 - 232695*x^3 + 961183*x^4 - 3017869*x^5 + 7388387*x^6 - 14256058*x^7 + 21694227*x^8 - 25838259*x^9 + 23693517*x^10 - 16267523*x^11 + 7986763*x^12 - 2589705*x^13 + 474491*x^14 - 32768*x^15) / ((1 - x)*(1 - 2*x)^15) (conjectured). - Colin Barker, Sep 10 2017
KEYWORD
nonn
AUTHOR
Pascal Prea (pascal.prea(AT)lim.univ-mrs.fr), Apr 18 2002
EXTENSIONS
a(10)-a(24) from Nathaniel Johnston, Apr 13 2011
STATUS
approved