Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 28 2013 09:03:46
%S 128,1375,10238,62347,331561,1595475,7102354,29688844,117789230,
%T 447095308,1633583432,5773429726,19814156786,66246078602,216345953850,
%U 691705334522,2169266885114,6684119486458,20264694041594,60526805714938,178299235266554,518528519151610,1490041038438394,4234162281971706,11906594366685178
%N Number of Bottleneck-Monge matrices with 7 rows.
%C Bottleneck-Monge matrices are {0,1} matrices A in which, for every i<j and k<l, max(A[i,l],A[j,k]) <= max(A[i,k],A[j,l]).
%H Nathaniel Johnston, <a href="/A070055/b070055.txt">Table of n, a(n) for n = 1..400</a>
%F a(N) = a(7, N), where a(P, N) is defined recursively in A070050.
%F Empirical G.f.: -x*(8192*x^13 -101240*x^12 +472850*x^11 -1238864*x^10 +2119510*x^9 -2555238*x^8 +2264076*x^7 -1508235*x^6 +762058*x^5 -290820*x^4 +82129*x^3 -16377*x^2 +2081*x -128) / ((x -1)*(2*x -1)^13). - _Colin Barker_, Feb 28 2013
%Y Cf. A070050, A070051, A070052, A070053, A070054, A070056, A070057.
%K nonn
%O 1,1
%A Pascal Prea (pascal.prea(AT)lim.univ-mrs.fr), Apr 18 2002
%E a(10) - a(25) from _Nathaniel Johnston_, Apr 13 2011