login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4-gonal compositions of n into positive parts.
2

%I #29 Sep 26 2019 09:41:26

%S 0,0,0,0,1,4,10,16,31,40,68,80,125,140,206,224,315,336,456,480,633,

%T 660,850,880,1111,1144,1420,1456,1781,1820,2198,2240,2675,2720,3216,

%U 3264,3825,3876,4506,4560,5263,5320,6100,6160,7021,7084,8030

%N Number of 4-gonal compositions of n into positive parts.

%H Colin Barker, <a href="/A069982/b069982.txt">Table of n, a(n) for n = 0..1000</a>

%H G. E. Andrews, P. Paule and A. Riese, <a href="https://www.researchgate.net/publication/277299165_MacMahon&#39;s_Partition_Analysis_III_The_Omega_Package">MacMahon's partition analysis III. The Omega package</a>, p. 17.

%H G. E. Andrews, P. Paule and A. Riese, <a href="https://doi.org/10.1006/eujc.2001.0527">MacMahon's Partition Analysis: The Omega Package</a>, European Journal of Combinatorics, Vol. 22, No. 7 (2001), 887-904.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).

%F G.f.: q^4/(1-q)^4-4*q^7/(1-q)^4/(1+q)^3.

%F a(n) = (2*n^3-3*n^2-23*n+3*(13+(n^2-7*n+11)*(-1)^n))/24. - _Luce ETIENNE_, Jul 02 2015; edited by _Mo Li_, Sep 18 2019

%F a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7. - _Colin Barker_, Sep 18 2019

%t Table[Piecewise[{

%t {Binomial[k - 1, k - 4] - 4*Binomial[(k - 1)/2, (k - 7)/2], Mod[k, 2] == 1},

%t {Binomial[k - 1, k - 4] - 4*Binomial[(k - 2)/2, (k - 8)/2], Mod[k, 2] == 0}}], {k, 1, 20}] (* _Mo Li_, Sep 18 2019 *)

%o (PARI) concat([0,0,0,0], Vec(x^4*(1 + 3*x + 3*x^2 - 3*x^3) / ((1 - x)^4*(1 + x)^3) + O(x^40))) \\ _Colin Barker_, Sep 18 2019

%Y Cf. A069981, A069983, A005044.

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_, May 06 2002