Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 24 2022 04:34:04
%S 15,126,429,1020,1995,3450,5481,8184,11655,15990,21285,27636,35139,
%T 43890,53985,65520,78591,93294,109725,127980,148155,170346,194649,
%U 221160,249975,281190,314901,351204,390195,431970,476625,524256,574959
%N a(n) = n*(16*n^2-1).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F Sum_{n>=1} 1/a(n) = 3*log(2) - 2 = A016631 - 2. (Ramanujan)
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - log(2) + sqrt(2)*log(sqrt(2)-1). - _Amiram Eldar_, Jun 24 2022
%t Table[n(16n^2-1),{n,40}] (* _Harvey P. Dale_, Dec 17 2018 *)
%o (PARI) a(n) = n*(16*n^2-1); \\ _Michel Marcus_, Nov 25 2013
%Y Cf. A016631.
%K easy,nonn
%O 1,1
%A _Benoit Cloitre_, Apr 30 2002